organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(2,4-Dinitrophenyl)dehydroabietylamine

Fei Qiu,^a Min Hong,^b Dawei Jiang,^a Jin Zhu^b and Lequn Lee Huang^c*

^aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, ^bDepartment of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^cMedical School, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: huanglg@nju.edu.cn

Received 27 March 2008; accepted 16 April 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.062; *wR* factor = 0.140; data-to-parameter ratio = 9.9.

In the crystal structure of the title compound, $C_{26}H_{33}N_3O_4$, there are two crystallographically independent molecules. The two cyclohexane rings are *trans*-fused; the ring neighboring the phenyl group is in a half-chair conformation and the other is in a chair conformation. The two nitro groups and the benzene ring of the dinitrophenyl group are almost coplanar. Intramolecular $N-H\cdots O$ hydrogen bonds and weak intermolecular $C-H\cdots O$ hydrogen bonds are observed.

Related literature

For related literature, see: Baudequin *et al.* (2005); Gottstein & Cheney (1965); Jiang *et al.* (2007); Ou & Huang (2006); Pan *et al.* (2005); Patrascu *et al.* (2004).

a = 14.119 (7) Å

b = 23.574 (12) Å

c = 7.309 (4) Å

Experimental

Crystal data $C_{26}H_{33}N_3O_4$ $M_r = 451.55$ Monoclinic, $P2_1$ $\beta = 99.191 \ (9)^{\circ}$ $V = 2402 \ (2) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) *T*_{min} = 0.98, *T*_{max} = 0.98

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.139$ S = 1.076027 reflections 609 parameters 1 restraint 15350 measured reflections 6027 independent reflections 4715 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.19$ e Å⁻³ $\Delta \rho_{\rm min} = -0.19$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N3-H3A\cdots O4 N6-H6\cdots O8 C10-H10A\cdots O5^{i} C23-H23B\cdots O5^{i} C41-H41\cdots O8^{ii}$	0.86 (5) 0.86 (5) 0.97 0.96 0.93	1.95 (5) 1.99 (5) 2.24 2.46 2.55	2.650 (4) 2.643 (4) 3.078 (5) 3.242 (5) 3.435 (5)	137 (4) 132 (4) 144 139 159

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 2; (ii) -x + 2, $y - \frac{1}{2}$, -z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We acknowledge the National Natural Science Foundation of China (No. 20604011) and the Six-Profession Talents Summit Program of Jiangsu Province (No. 06-A-018) for support of this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2284).

References

- Baudequin, C., Bregeon, D., Levillain, J., Guillen, F., Plaquevent, J. C. & Gaumont, A. C. (2005). *Tetrahedron Asymmetry*, 16, 3921–3945.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gottstein, W. J. & Cheney, L. C. (1965). J. Org. Chem. 30, 2072-2073.
- Jiang, D., Hong, M., Qiu, F., Zhu, J. & Huang, L. (2007). Acta Cryst. E63, 03623-03624.
- Ou, W. & Huang, Z. (2006). Green Chem. 8, 731-734.
- Pan, Y.-M., Zhang, Y., Wang, H.-S., Tong, B.-H., Chen, Z.-F. & Zhang, Y. (2005). Acta Cryst. E61, o3003–o3005.
- Patrascu, C., Sugisaki, C., Mintogaud, C., Marty, J.-D., Genisson, Y. & Lauth de Viguerie, N. (2004). *Heterocycles*, 63, 2033–2041.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, 0889 [doi:10.1107/S1600536808010490]

N-(2,4-Dinitrophenyl)dehydroabietylamine

F. Qiu, M. Hong, D. Jiang, J. Zhu and L. L. Huang

Comment

Chiral ionic liquids have potential applications in chiral recognition and asymmetric synthesis (Baudequin *et al.*, 2005). One way to get chiral ionic liquids is from chiral amine through Marazano's route (Patrascu *et al.*, 2004; Ou & Huang, 2006). Dehydroabietylamine which acts as a resolving agent for carboxylic acids (Gottstein & Cheney, 1965), has three chiral centres, and is inexpensive and relatively nontoxic. The title compound, (I), was an unexpected product obtained in an attempt to synthesize a chiral imidazolium ionic liquid *via* the reaction of 1-(2,4-dinitrophenyl)-3-methylimidazolium chloride with dehydroabietylamine. In this work, we describe the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the asymmetric unit of (I) contains two independent molecules. Each molecule has three chiral centers. In (I), there exists four crystallographically distinct six-membered rings. Two cyclohexane rings form a *trans* ring junction with a classical chair and a half-chair conformation, and two methyl groups in axial positions (Pan *et al.*, 2005; Jiang *et al.*, 2007). Two nitro groups and the benzene ring in the substituted aryl group are almost coplanar. Intramolecular N—H…O hydrogen bonds contribute strongly to the stability of the molecular configuration (Fig. 2 and Table 1). Further analysis of the crystal packing suggests that there are some weak C—H…O interactions stabilizing the packing of (I).

Experimental

To 1-(2,4-dinitrophenyl)-3-methylimidazolium chloride (3.0 g, 10.5 mmol) suspended in n-butanol (50 ml) was added a solution of dehydroabietylamine (3.3 g, 11.5 mmol) in n-butanol (10 ml) and the mixture was refluxed for 24 h. Removal of solvent under reduced pressure left a residue, which was further purified by column chromatography (n-hexane/ethyl acetate as eluent) and then recrystallized from methanol to give the title compound (yield 35.5%, m.p. 408–409 K).

Refinement

H atoms attached to C atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The coordinates of the H atoms bonded to N were refined with $U_{iso}(H) = 1.2U_{eq}(N)$, giving the N—H distance of 0.86 (5) Å. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 35% probability displacement ellipsoids and the atom-numbering schemes.

Fig. 2. A packing diagram of the title compound, showing hydrogen bonds drawn as dashed lines.

N-(2,4-Dinitrophenyl)dehydroabietylamine

Crystal data	
C ₂₆ H ₃₃ N ₃ O ₄	$F_{000} = 968$
$M_r = 451.55$	$D_{\rm x} = 1.249 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1357 reflections
<i>a</i> = 14.119 (7) Å	$\theta = 2.9 - 18.1^{\circ}$
<i>b</i> = 23.574 (12) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 7.309 (4) Å	T = 291 (2) K
$\beta = 99.191 \ (9)^{\circ}$	Block, light-yellow
$V = 2402 (2) \text{ Å}^3$	$0.30\times0.26\times0.24~mm$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	6027 independent reflections
Radiation source: sealed tube	4715 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 291(2) K	$\theta_{max} = 28.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -16 \rightarrow 18$
$T_{\min} = 0.98, T_{\max} = 0.98$	$k = -31 \rightarrow 31$
15350 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.139$	$w = 1/[\sigma^2 (F_o^2) + (0.07P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
6027 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
609 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.6051 (3)	1.03496 (15)	0.3284 (6)	0.0432 (8)
C2	0.6497 (3)	1.01296 (18)	0.1815 (5)	0.0433 (8)
H2	0.6574	0.9738	0.1763	0.052*
C3	0.6826 (3)	1.0453 (2)	0.0451 (6)	0.0539 (10)
Н3	0.7101	1.0292	-0.0501	0.065*
C4	0.6711 (3)	1.1052 (2)	0.0627 (7)	0.0562 (11)
C5	0.6347 (3)	1.12950 (17)	0.2041 (6)	0.0481 (9)
H5	0.6308	1.1688	0.2131	0.058*
C6	0.6036 (3)	1.09476 (15)	0.3349 (5)	0.0419 (8)
C7	0.5823 (3)	0.93895 (15)	0.4645 (6)	0.0462 (9)
H7A	0.6455	0.9286	0.5285	0.055*
H7B	0.5737	0.9215	0.3428	0.055*
C8	0.5050(2)	0.91540 (12)	0.5747 (5)	0.0331 (7)
C9	0.5037 (3)	0.94785 (13)	0.7600 (5)	0.0386 (8)
H9A	0.5694	0.9527	0.8211	0.046*
H9B	0.4773	0.9854	0.7309	0.046*
C10	0.4483 (3)	0.92050 (15)	0.8925 (6)	0.0447 (9)
H10A	0.3817	0.9166	0.8359	0.054*
H10B	0.4509	0.9439	1.0024	0.054*
C11	0.4910 (3)	0.86223 (14)	0.9458 (5)	0.0415 (8)
H11A	0.4554	0.8445	1.0336	0.050*
H11B	0.5570	0.8666	1.0057	0.050*
C12	0.4876 (3)	0.82217 (15)	0.7685 (5)	0.0381 (7)
C13	0.5412 (3)	0.76731 (14)	0.8357 (5)	0.0357 (7)
C14	0.5280 (2)	0.74107 (13)	0.9926 (5)	0.0344 (7)
H14	0.4851	0.7570	1.0623	0.041*
C15	0.5761 (3)	0.69012 (16)	1.0579 (5)	0.0459 (8)
H15	0.5650	0.6737	1.1683	0.055*
C16	0.6404 (3)	0.66476 (14)	0.9544 (5)	0.0398 (8)
C17	0.6516 (3)	0.69130 (14)	0.7860 (5)	0.0407 (8)
H17	0.6923	0.6752	0.7122	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C18	0.6025 (2)	0.74134 (14)	0.7281 (5)	0.0352 (7)
C19	0.6249 (3)	0.76646 (14)	0.5425 (5)	0.0390 (8)
H19A	0.6892	0.7822	0.5620	0.047*
H19B	0.6224	0.7365	0.4510	0.047*
C20	0.5532 (3)	0.81258 (14)	0.4705 (5)	0.0383 (8)
H20A	0.4914	0.7958	0.4236	0.046*
H20B	0.5752	0.8331	0.3701	0.046*
C21	0.5437 (3)	0.85369 (13)	0.6321 (5)	0.0331 (7)
H21	0.6089	0.8590	0.6994	0.040*
C22	0.4086 (3)	0.91669 (18)	0.4435 (6)	0.0513 (10)
H22A	0.3573	0.9200	0.5147	0.077*
H22B	0.4010	0.8823	0.3723	0.077*
H22C	0.4072	0.9486	0.3615	0.077*
C23	0.3848 (3)	0.80579 (14)	0.7005 (5)	0.0421 (8)
H23A	0.3797	0.7896	0.5788	0.063*
H23B	0.3448	0.8389	0.6957	0.063*
H23C	0.3644	0.7785	0.7836	0.063*
C24	0.6938 (3)	0.61086 (15)	1.0142 (6)	0.0420 (8)
H24	0.7451	0.6057	0.9399	0.050*
C25	0.6235 (3)	0.56052 (16)	0.9783 (6)	0.0513 (10)
H25A	0.6583	0.5268	0.9571	0.077*
H25B	0.5764	0.5684	0.8713	0.077*
H25C	0.5921	0.5551	1.0842	0.077*
C26	0.7371 (3)	0.61064 (15)	1.2165 (6)	0.0462 (9)
H26A	0.6879	0.6031	1.2901	0.069*
H26B	0.7655	0.6470	1.2499	0.069*
H26C	0.7854	0.5817	1.2386	0.069*
C27	0.8660 (3)	0.30147 (16)	0.5585 (5)	0.0461 (9)
C28	0.8144 (2)	0.28052 (15)	0.6931 (5)	0.0364 (7)
H28	0.7932	0.2431	0.6848	0.044*
C29	0.7940 (3)	0.31439 (17)	0.8397 (6)	0.0476 (9)
H29	0.7646	0.2991	0.9338	0.057*
C30	0.8189 (3)	0.37176 (18)	0.8405 (5)	0.0461 (9)
C31	0.8630 (3)	0.39573 (17)	0.7035 (6)	0.0481 (9)
H31	0.8753	0.4345	0.7041	0.058*
C32	0.8884 (3)	0.36200 (17)	0.5670 (6)	0.0496 (10)
C33	0.8782 (3)	0.20752 (18)	0.4190 (7)	0.0526 (10)
H33A	0.8187	0.1987	0.3378	0.063*
H33B	0.8737	0.1928	0.5413	0.063*
C34	0.9638 (2)	0.17850 (16)	0.3441 (5)	0.0394 (8)
C35	0.9616 (3)	0.2017 (2)	0.1400 (6)	0.0533 (10)
H35A	0.8959	0.2009	0.0759	0.064*
H35B	0.9825	0.2409	0.1467	0.064*
C36	1.0223 (3)	0.16940 (16)	0.0306 (6)	0.0451 (9)
H36A	1.0886	0.1716	0.0908	0.054*
H36B	1.0181	0.1864	-0.0913	0.054*
C37	0.9912 (3)	0.10552 (17)	0.0095 (6)	0.0451 (9)
H37A	0.9266	0.1031	-0.0593	0.054*
H37B	1.0338	0.0855	-0.0601	0.054*

C38	0.9944 (3)	0.07674 (16)	0.2038 (5)	0.0410 (8)
C39	0.9476 (3)	0.01943 (17)	0.1764 (6)	0.0462 (9)
C40	0.9525 (3)	-0.01538 (18)	0.0191 (6)	0.0487 (9)
H40	0.9807	-0.0001	-0.0765	0.058*
C41	0.9189 (3)	-0.06933 (18)	-0.0008 (6)	0.0527 (10)
H41	0.9299	-0.0920	-0.0995	0.063*
C42	0.8665 (3)	-0.08959 (17)	0.1350 (6)	0.0495 (9)
C43	0.8643 (3)	-0.05987 (15)	0.2910 (6)	0.0469 (9)
H43	0.8387	-0.0768	0.3871	0.056*
C44	0.8990 (3)	-0.00449 (16)	0.3140 (6)	0.0454 (9)
C45	0.8833 (3)	0.02884 (19)	0.4823 (5)	0.0504 (9)
H45A	0.8157	0.0382	0.4710	0.060*
H45B	0.8995	0.0050	0.5910	0.060*
C46	0.9406 (3)	0.08257 (18)	0.5118 (5)	0.0472 (9)
H46A	1.0063	0.0738	0.5659	0.057*
H46B	0.9137	0.1070	0.5971	0.057*
C47	0.9395 (3)	0.11368 (17)	0.3245 (5)	0.0414 (8)
H47	0.8725	0.1122	0.2635	0.050*
C48	1.0574 (3)	0.19114 (17)	0.4684 (6)	0.0478 (9)
H48A	1.0632	0.2313	0.4892	0.072*
H48B	1.1098	0.1781	0.4102	0.072*
H48C	1.0589	0.1720	0.5847	0.072*
C49	1.1003 (3)	0.06585 (17)	0.2926 (6)	0.0477 (9)
H49A	1.1022	0.0490	0.4127	0.071*
H49B	1.1346	0.1012	0.3049	0.071*
H49C	1.1297	0.0407	0.2150	0.071*
C50	0.8210 (3)	-0.15026 (17)	0.1030 (6)	0.0457 (9)
H50	0.7520	-0.1475	0.1065	0.055*
C51	0.8665 (3)	-0.18691 (18)	0.2626 (6)	0.0485 (9)
H51A	0.8173	-0.2052	0.3177	0.073*
H51B	0.9050	-0.1637	0.3537	0.073*
H51C	0.9063	-0.2151	0.2180	0.073*
C52	0.8352 (3)	-0.18168 (19)	-0.0710 (5)	0.0524 (10)
H52A	0.8988	-0.1972	-0.0552	0.079*
H52B	0.8266	-0.1559	-0.1740	0.079*
H52C	0.7891	-0.2118	-0.0941	0.079*
N1	0.7052 (2)	1.13979 (16)	-0.0758 (5)	0.0526 (9)
N2	0.5607 (2)	1.12477 (13)	0.4765 (5)	0.0467 (8)
N3	0.5767 (3)	1.00406 (13)	0.4424 (5)	0.0487 (8)
НЗА	0.549 (3)	1.021 (2)	0.523 (7)	0.058*
N4	0.7997 (2)	0.40656 (16)	0.9895 (6)	0.0549 (9)
N5	0.9317 (3)	0.39006 (16)	0.4270 (6)	0.0568 (9)
N6	0.8912 (2)	0.26788 (15)	0.4290 (5)	0.0478 (8)
Н6	0.918 (3)	0.284 (2)	0.344 (7)	0.057*
01	0.7368 (2)	1.11758 (13)	-0.2038 (4)	0.0527 (7)
O2	0.70301 (19)	1.19145 (13)	-0.0571 (4)	0.0495 (7)
O3	0.57835 (17)	1.17599 (9)	0.4971 (4)	0.0389 (5)
O4	0.5187 (2)	1.09936 (10)	0.5818 (4)	0.0450 (6)
05	0.7625 (2)	0.38555 (12)	1.1176 (4)	0.0506 (7)

O6	0.8212 (2)	0.45609 (12)	0.9977 (4)	0.0512 (7)
07	0.93068 (18)	0.44089 (12)	0.4172 (4)	0.0479 (6)
O8	0.9785 (2)	0.35937 (12)	0.3293 (4)	0.0494 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.055 (2)	0.0282 (17)	0.048 (2)	-0.0011 (15)	0.0145 (17)	0.0057 (15)
C2	0.0429 (18)	0.049 (2)	0.0401 (19)	-0.0011 (16)	0.0125 (16)	0.0006 (16)
C3	0.059 (2)	0.059 (3)	0.045 (2)	-0.004 (2)	0.016 (2)	0.0064 (19)
C4	0.051 (2)	0.062 (3)	0.059 (3)	0.0028 (19)	0.0181 (19)	0.022 (2)
C5	0.0405 (19)	0.0402 (19)	0.063 (3)	0.0012 (15)	0.0062 (18)	0.0205 (18)
C6	0.060 (2)	0.0285 (16)	0.0371 (18)	0.0034 (15)	0.0081 (16)	0.0037 (14)
C7	0.065 (2)	0.0340 (18)	0.044 (2)	-0.0035 (17)	0.0238 (18)	0.0093 (15)
C8	0.0305 (15)	0.0190 (13)	0.0514 (19)	0.0003 (11)	0.0117 (14)	-0.0050 (13)
C9	0.0415 (16)	0.0232 (14)	0.057 (2)	0.0065 (13)	0.0248 (16)	-0.0095 (14)
C10	0.056 (2)	0.0351 (18)	0.049 (2)	0.0085 (16)	0.0267 (18)	0.0059 (15)
C11	0.056 (2)	0.0302 (17)	0.0373 (18)	0.0018 (15)	0.0051 (16)	-0.0096 (14)
C12	0.0418 (18)	0.0327 (17)	0.0418 (19)	-0.0009 (14)	0.0127 (15)	-0.0057 (14)
C13	0.0452 (18)	0.0285 (15)	0.0355 (16)	-0.0006 (14)	0.0131 (14)	-0.0032 (13)
C14	0.0433 (17)	0.0211 (13)	0.0437 (18)	-0.0080 (13)	0.0219 (14)	-0.0025 (13)
C15	0.059 (2)	0.0371 (19)	0.042 (2)	-0.0016 (17)	0.0098 (17)	0.0057 (16)
C16	0.0444 (18)	0.0261 (16)	0.046 (2)	0.0035 (14)	-0.0019 (15)	0.0028 (14)
C17	0.054 (2)	0.0240 (15)	0.0467 (19)	-0.0027 (14)	0.0147 (16)	0.0017 (14)
C18	0.0411 (17)	0.0337 (16)	0.0341 (16)	0.0100 (14)	0.0159 (14)	0.0021 (13)
C19	0.057 (2)	0.0338 (17)	0.0321 (16)	0.0245 (15)	0.0254 (15)	0.0071 (13)
C20	0.0441 (18)	0.0261 (15)	0.049 (2)	0.0134 (13)	0.0197 (16)	-0.0029 (14)
C21	0.0447 (18)	0.0207 (13)	0.0336 (17)	0.0115 (12)	0.0053 (14)	0.0012 (12)
C22	0.046 (2)	0.042 (2)	0.059 (2)	0.0082 (16)	-0.0129 (18)	0.0162 (18)
C23	0.052 (2)	0.0274 (16)	0.0436 (19)	-0.0006 (14)	-0.0014 (16)	-0.0077 (14)
C24	0.0447 (19)	0.0308 (16)	0.050 (2)	-0.0030 (14)	0.0054 (16)	0.0094 (15)
C25	0.059 (2)	0.0331 (19)	0.055 (2)	0.0007 (16)	-0.0121 (19)	-0.0160 (16)
C26	0.050 (2)	0.0294 (17)	0.052 (2)	0.0095 (14)	-0.0156 (17)	-0.0079 (15)
C27	0.060 (2)	0.040 (2)	0.043 (2)	-0.0045 (16)	0.0252 (18)	0.0103 (16)
C28	0.0326 (15)	0.0414 (18)	0.0382 (17)	-0.0001 (13)	0.0152 (13)	0.0158 (14)
C29	0.048 (2)	0.047 (2)	0.053 (2)	0.0011 (17)	0.0230 (18)	0.0061 (17)
C30	0.045 (2)	0.053 (2)	0.039 (2)	0.0013 (16)	0.0026 (16)	0.0023 (16)
C31	0.051 (2)	0.044 (2)	0.053 (2)	0.0036 (17)	0.0191 (18)	0.0070 (17)
C32	0.052 (2)	0.044 (2)	0.057 (2)	0.0019 (17)	0.0231 (19)	0.0163 (18)
C33	0.049 (2)	0.053 (2)	0.059 (3)	0.0070 (18)	0.020 (2)	0.0074 (19)
C34	0.0322 (15)	0.049 (2)	0.0383 (18)	-0.0087 (14)	0.0087 (14)	-0.0041 (15)
C35	0.057 (2)	0.067 (3)	0.038 (2)	0.013 (2)	0.0137 (17)	0.0020 (18)
C36	0.0416 (19)	0.047 (2)	0.052 (2)	-0.0066 (16)	0.0224 (17)	0.0010 (17)
C37	0.050 (2)	0.050 (2)	0.0422 (19)	-0.0061 (16)	0.0277 (16)	0.0090 (16)
C38	0.054 (2)	0.0417 (19)	0.0286 (16)	0.0002 (16)	0.0112 (15)	0.0004 (14)
C39	0.049 (2)	0.042 (2)	0.050 (2)	0.0074 (16)	0.0171 (17)	0.0019 (16)
C40	0.046 (2)	0.053 (2)	0.050 (2)	-0.0102 (17)	0.0156 (18)	-0.0104 (18)
C41	0.052 (2)	0.053 (2)	0.060 (3)	-0.0086 (18)	0.030 (2)	-0.0151 (19)

C42	0.053 (2)	0.046 (2)	0.056 (2)	0.0008 (17)	0.0279 (18)	-0.0146 (18)
C43	0.060 (2)	0.0311 (18)	0.055 (2)	0.0016 (16)	0.0264 (19)	-0.0056 (16)
C44	0.0364 (17)	0.047 (2)	0.057 (2)	-0.0018 (15)	0.0211 (17)	-0.0112 (17)
C45	0.056 (2)	0.060 (2)	0.0368 (19)	-0.0081 (19)	0.0127 (17)	-0.0130 (17)
C46	0.060 (2)	0.058 (2)	0.0237 (16)	-0.0101 (18)	0.0073 (16)	-0.0009 (15)
C47	0.0413 (18)	0.053 (2)	0.0330 (17)	-0.0014 (15)	0.0147 (14)	-0.0052 (15)
C48	0.0393 (18)	0.043 (2)	0.058 (2)	0.0094 (15)	-0.0001 (17)	0.0002 (18)
C49	0.048 (2)	0.046 (2)	0.056 (2)	0.0143 (17)	0.0266 (18)	0.0156 (17)
C50	0.046 (2)	0.044 (2)	0.050 (2)	-0.0041 (16)	0.0168 (17)	-0.0169 (17)
C51	0.049 (2)	0.052 (2)	0.052 (2)	0.0156 (17)	0.0310 (18)	-0.0003 (17)
C52	0.069 (3)	0.054 (2)	0.0344 (19)	-0.013 (2)	0.0110 (18)	-0.0182 (17)
N1	0.0447 (18)	0.062 (2)	0.051 (2)	-0.0056 (16)	0.0073 (15)	0.0190 (18)
N2	0.0492 (18)	0.0325 (16)	0.061 (2)	0.0058 (13)	0.0167 (16)	-0.0006 (14)
N3	0.060 (2)	0.0323 (15)	0.059 (2)	0.0134 (14)	0.0258 (17)	0.0106 (14)
N4	0.0407 (16)	0.059 (2)	0.074 (2)	-0.0129 (15)	0.0368 (17)	-0.0182 (18)
N5	0.060 (2)	0.052 (2)	0.065 (2)	-0.0081 (17)	0.0302 (18)	0.0090 (18)
N6	0.0416 (16)	0.055 (2)	0.055 (2)	0.0091 (14)	0.0337 (15)	0.0108 (16)
01	0.0482 (15)	0.0534 (17)	0.0579 (18)	0.0120 (13)	0.0132 (13)	0.0199 (14)
O2	0.0402 (14)	0.0585 (17)	0.0540 (16)	-0.0084 (12)	0.0203 (12)	0.0111 (13)
O3	0.0461 (12)	0.0225 (11)	0.0516 (14)	0.0126 (9)	0.0185 (11)	0.0055 (10)
O4	0.0571 (16)	0.0349 (13)	0.0460 (14)	0.0099 (12)	0.0175 (12)	0.0055 (11)
O5	0.0531 (15)	0.0542 (16)	0.0460 (15)	-0.0260 (12)	0.0124 (12)	-0.0079 (12)
O6	0.0542 (16)	0.0463 (16)	0.0557 (17)	-0.0035 (12)	0.0166 (13)	-0.0040 (13)
O7	0.0435 (13)	0.0539 (17)	0.0458 (15)	-0.0245 (12)	0.0057 (11)	0.0123 (12)
O8	0.0535 (16)	0.0477 (15)	0.0511 (16)	-0.0099 (12)	0.0208 (13)	0.0168 (12)

Geometric parameters (Å, °)

C1—N3	1.222 (5)	C29—C30	1.397 (6)
C1—C6	1.411 (5)	С29—Н29	0.9300
C1—C2	1.426 (5)	C30—C31	1.381 (5)
C2—C3	1.392 (5)	C30—N4	1.424 (5)
С2—Н2	0.9300	C31—C32	1.367 (6)
C3—C4	1.429 (7)	С31—Н31	0.9300
С3—Н3	0.9300	C32—N5	1.435 (5)
C4—C5	1.352 (6)	C33—N6	1.435 (6)
C4—N1	1.441 (5)	C33—C34	1.562 (5)
C5—C6	1.383 (5)	С33—Н33А	0.9700
С5—Н5	0.9300	С33—Н33В	0.9700
C6—N2	1.462 (5)	C34—C48	1.510 (5)
C7—N3	1.544 (5)	C34—C47	1.568 (5)
C7—C8	1.558 (5)	C34—C35	1.584 (5)
С7—Н7А	0.9700	C35—C36	1.474 (5)
С7—Н7В	0.9700	С35—Н35А	0.9700
C8—C22	1.535 (5)	С35—Н35В	0.9700
C8—C9	1.558 (5)	C36—C37	1.569 (5)
C8—C21	1.587 (4)	С36—Н36А	0.9700
C9—C10	1.486 (5)	С36—Н36В	0.9700
С9—Н9А	0.9700	C37—C38	1.568 (5)

С9—Н9В	0.9700	С37—Н37А	0.9700
C10-C11	1.525 (5)	С37—Н37В	0.9700
C10—H10A	0.9700	C38—C39	1.503 (6)
C10—H10B	0.9700	C38—C47	1.535 (5)
C11—C12	1.598 (5)	C38—C49	1.554 (6)
C11—H11A	0.9700	C39—C44	1.421 (5)
C11—H11B	0.9700	C39—C40	1.423 (6)
C12—C23	1.508 (5)	C40—C41	1.357 (6)
C12—C13	1.539 (5)	C40—H40	0.9300
C12—C21	1.557 (5)	C41—C42	1.413 (5)
C13—C14	1.342 (5)	C41—H41	0.9300
C13—C18	1.400 (4)	C42—C43	1.343 (5)
C14—C15	1.424 (5)	C42—C50	1.570 (6)
C14—H14	0.9300	C43—C44	1.395 (5)
C15—C16	1.405 (5)	C43—H43	0.9300
С15—Н15	0.9300	C44—C45	1.506 (5)
C16—C17	1.412 (5)	C45—C46	1.500 (6)
C16—C24	1.506 (5)	C45—H45A	0.9700
C17—C18	1.399 (5)	C45—H45B	0.9700
C17—H17	0.9300	C46—C47	1.551 (5)
C18—C19	1.558 (4)	C46—H46A	0.9700
C19—C20	1.521 (4)	С46—Н46В	0.9700
C19—H19A	0.9700	С47—Н47	0.9800
C19—H19B	0.9700	C48—H48A	0.9600
C20—C21	1.550 (4)	C48—H48B	0.9600
C20—H20A	0.9700	C48—H48C	0.9600
C20—H20B	0.9700	C49—H49A	0.9600
C21—H21	0.9800	C49—H49B	0.9600
C22—H22A	0.9600	С49—Н49С	0.9600
С22—Н22В	0.9600	C50—C51	1.511 (6)
С22—Н22С	0.9600	C50—C52	1.512 (5)
C23—H23A	0.9600	С50—Н50	0.9800
С23—Н23В	0.9600	C51—H51A	0.9600
C23—H23C	0.9600	C51—H51B	0.9600
C24—C26	1.507 (5)	C51—H51C	0.9600
C24—C25	1.542 (5)	С52—Н52А	0.9600
C24—H24	0.9800	С52—Н52В	0.9600
C25—H25A	0.9600	С52—Н52С	0.9600
С25—Н25В	0.9600	N1—O1	1.217 (5)
C25—H25C	0.9600	N1—O2	1.226 (5)
C26—H26A	0.9600	N2—O4	1.204 (4)
C26—H26B	0.9600	N2—O3	1.237 (4)
C26—H26C	0.9600	N3—H3A	0.86 (5)
C27—N6	1.326 (5)	N4—O6	1.206 (4)
C27—C28	1.404 (4)	N4—O5	1.247 (4)
C27—C32	1.461 (6)	N5—07	1.200 (5)
C28—C29	1.403 (5)	N5—O8	1.273 (5)
C28—H28	0.9300	N6—H6	0.86 (5)
N3—C1—C6	124.4 (4)	C31—C30—C29	122.4 (4)

N3—C1—C2	121.9 (4)	C31—C30—N4	118.8 (4)
C6—C1—C2	113.5 (3)	C29—C30—N4	118.8 (4)
C3—C2—C1	125.3 (4)	C32—C31—C30	119.5 (4)
С3—С2—Н2	117.4	С32—С31—Н31	120.3
C1—C2—H2	117.4	С30—С31—Н31	120.3
C2—C3—C4	114.9 (4)	C31—C32—N5	116.3 (4)
С2—С3—Н3	122.6	C31—C32—C27	121.3 (3)
С4—С3—Н3	122.6	N5-C32-C27	122.3 (4)
C5—C4—C3	123.4 (4)	N6—C33—C34	110.6 (3)
C5—C4—N1	120.5 (4)	N6—C33—H33A	109.5
C3—C4—N1	116.1 (4)	С34—С33—Н33А	109.5
C4—C5—C6	118.6 (4)	N6—C33—H33B	109.5
С4—С5—Н5	120.7	С34—С33—Н33В	109.5
С6—С5—Н5	120.7	H33A—C33—H33B	108.1
C5—C6—C1	124.1 (4)	C48—C34—C33	110.8 (3)
C5—C6—N2	114.6 (3)	C48—C34—C47	113.9 (3)
C1—C6—N2	121.2 (3)	C33—C34—C47	106.8 (3)
N3—C7—C8	112.3 (3)	C48—C34—C35	112.5 (3)
N3—C7—H7A	109.1	C33—C34—C35	106.2 (3)
С8—С7—Н7А	109.1	C47—C34—C35	106.2 (3)
N3—C7—H7B	109.1	C36—C35—C34	114.0 (3)
С8—С7—Н7В	109.1	С36—С35—Н35А	108.8
Н7А—С7—Н7В	107.9	С34—С35—Н35А	108.8
C22—C8—C9	113.6 (3)	С36—С35—Н35В	108.8
C22—C8—C7	107.1 (3)	С34—С35—Н35В	108.8
C9—C8—C7	112.4 (3)	H35A—C35—H35B	107.6
C22—C8—C21	114.6 (3)	C35—C36—C37	111.8 (3)
C9—C8—C21	105.8 (3)	С35—С36—Н36А	109.3
C7—C8—C21	102.9 (3)	С37—С36—Н36А	109.3
С10—С9—С8	115.7 (3)	С35—С36—Н36В	109.3
С10—С9—Н9А	108.3	С37—С36—Н36В	109.3
С8—С9—Н9А	108.3	H36A—C36—H36B	107.9
С10—С9—Н9В	108.3	C38—C37—C36	111.0 (3)
С8—С9—Н9В	108.3	С38—С37—Н37А	109.4
Н9А—С9—Н9В	107.4	С36—С37—Н37А	109.4
C9—C10—C11	109.3 (3)	С38—С37—Н37В	109.4
C9—C10—H10A	109.8	С36—С37—Н37В	109.4
C11—C10—H10A	109.8	Н37А—С37—Н37В	108.0
C9—C10—H10B	109.8	C39—C38—C47	109.5 (3)
C11—C10—H10B	109.8	C39—C38—C49	106.3 (3)
H10A—C10—H10B	108.3	C47—C38—C49	113.3 (3)
C10—C11—C12	111.4 (3)	C39—C38—C37	108.6 (3)
C10-C11-H11A	109.3	C47—C38—C37	109.3 (3)
C12—C11—H11A	109.3	C49—C38—C37	109.7 (3)
C10—C11—H11B	109.3	C44—C39—C40	115.7 (4)
C12—C11—H11B	109.3	C44—C39—C38	120.9 (3)
H11A—C11—H11B	108.0	C40—C39—C38	123.3 (3)
C23—C12—C13	106.8 (3)	C41—C40—C39	124.4 (4)
C23—C12—C21	118.2 (3)	C41—C40—H40	117.8

C13—C12—C21	109.3 (3)	C39—C40—H40	117.8
C23—C12—C11	108.7 (3)	C40—C41—C42	117.1 (4)
C13—C12—C11	106.7 (3)	C40—C41—H41	121.5
C21—C12—C11	106.5 (3)	C42—C41—H41	121.5
C14—C13—C18	117.5 (3)	C43—C42—C41	120.4 (4)
C14—C13—C12	122.1 (3)	C43—C42—C50	122.5 (3)
C18—C13—C12	120.3 (3)	C41—C42—C50	116.8 (3)
C13—C14—C15	123.5 (3)	C42—C43—C44	122.4 (4)
C13—C14—H14	118.3	C42—C43—H43	118.8
C15—C14—H14	118.3	C44—C43—H43	118.8
C16—C15—C14	119.5 (3)	C43—C44—C39	119.1 (3)
C16—C15—H15	120.2	C43—C44—C45	119.5 (3)
C14—C15—H15	120.2	C39—C44—C45	121.4 (4)
C15—C16—C17	116.9 (3)	C46—C45—C44	114.3 (3)
C15—C16—C24	122.6 (3)	C46—C45—H45A	108.7
C17—C16—C24	120.4 (3)	C44—C45—H45A	108.7
C18—C17—C16	121.2 (3)	C46—C45—H45B	108.7
C18—C17—H17	119.4	C44—C45—H45B	108.7
С16—С17—Н17	119.4	H45A—C45—H45B	107.6
C17—C18—C13	121.3 (3)	C45—C46—C47	110.1 (3)
C17—C18—C19	115.1 (3)	C45—C46—H46A	109.6
C13—C18—C19	123.6 (3)	C47—C46—H46A	109.6
C20—C19—C18	110.9 (3)	C45—C46—H46B	109.6
C20-C19-H19A	109.5	C47—C46—H46B	109.6
С18—С19—Н19А	109.5	H46A—C46—H46B	108.2
C20-C19-H19B	109.5	C38—C47—C46	107.7 (3)
С18—С19—Н19В	109.5	C38—C47—C34	118.8 (3)
H19A—C19—H19B	108.1	C46—C47—C34	114.1 (3)
C19—C20—C21	108.5 (3)	С38—С47—Н47	105.0
С19—С20—Н20А	110.0	C46—C47—H47	105.0
C21—C20—H20A	110.0	С34—С47—Н47	105.0
С19—С20—Н20В	110.0	C34—C48—H48A	109.5
C21—C20—H20B	110.0	C34—C48—H48B	109.5
H20A—C20—H20B	108.4	H48A—C48—H48B	109.5
C20-C21-C12	107.7 (3)	C34—C48—H48C	109.5
C20—C21—C8	116.1 (3)	H48A—C48—H48C	109.5
C12—C21—C8	114.7 (3)	H48B—C48—H48C	109.5
C20—C21—H21	105.8	С38—С49—Н49А	109.5
C12—C21—H21	105.8	С38—С49—Н49В	109.5
C8—C21—H21	105.8	H49A—C49—H49B	109.5
C8—C22—H22A	109.5	С38—С49—Н49С	109.5
C8—C22—H22B	109.5	H49A—C49—H49C	109.5
H22A—C22—H22B	109.5	H49B—C49—H49C	109.5
C8—C22—H22C	109.5	C51—C50—C52	105.8 (3)
H22A—C22—H22C	109.5	C51—C50—C42	107.0 (3)
H22B—C22—H22C	109.5	C52—C50—C42	117.7 (3)
С12—С23—Н23А	109.5	С51—С50—Н50	108.7
С12—С23—Н23В	109.5	С52—С50—Н50	108.7
H23A—C23—H23B	109.5	C42—C50—H50	108.7

С12—С23—Н23С	109.5	C50-C51-H51A	109.5
H23A—C23—H23C	109.5	C50-C51-H51B	109.5
H23B—C23—H23C	109.5	H51A—C51—H51B	109.5
C16—C24—C26	113.2 (3)	C50-C51-H51C	109.5
C16—C24—C25	108.8 (3)	H51A—C51—H51C	109.5
C26—C24—C25	108.3 (3)	H51B-C51-H51C	109.5
C16—C24—H24	108.9	С50—С52—Н52А	109.5
C26—C24—H24	108.9	С50—С52—Н52В	109.5
C25—C24—H24	108.9	H52A—C52—H52B	109.5
C24—C25—H25A	109.5	С50—С52—Н52С	109.5
C24—C25—H25B	109.5	H52A—C52—H52C	109.5
H25A—C25—H25B	109.5	H52B—C52—H52C	109.5
C24—C25—H25C	109.5	O1—N1—O2	122.1 (3)
H25A—C25—H25C	109.5	O1—N1—C4	120.1 (4)
H25B—C25—H25C	109.5	O2—N1—C4	117.8 (4)
C24—C26—H26A	109.5	O4—N2—O3	121.2 (3)
C24—C26—H26B	109.5	O4—N2—C6	120.9 (3)
H26A—C26—H26B	109.5	O3—N2—C6	117.4 (3)
С24—С26—Н26С	109.5	C1—N3—C7	130.3 (3)
H26A—C26—H26C	109.5	C1—N3—H3A	115 (3)
H26B—C26—H26C	109.5	C7—N3—H3A	115 (3)
N6-C27-C28	121.2 (3)	O6—N4—O5	118.7 (3)
N6-C27-C32	122.2 (3)	O6—N4—C30	121.2 (3)
C28—C27—C32	116.5 (3)	O5—N4—C30	120.0 (4)
C29—C28—C27	121.9 (3)	O7—N5—O8	122.5 (3)
C29—C28—H28	119.1	O7—N5—C32	120.0 (4)
C27—C28—H28	119.1	O8—N5—C32	117.2 (3)
C30—C29—C28	118.1 (3)	C27—N6—C33	125.6 (3)
С30—С29—Н29	120.9	С27—N6—H6	117 (3)
С28—С29—Н29	120.9	С33—N6—Н6	117 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3A…O4	0.86 (5)	1.95 (5)	2.650 (4)	137 (4)
N6—H6…O8	0.86 (5)	1.99 (5)	2.643 (4)	132 (4)
C10—H10A…O5 ⁱ	0.97	2.24	3.078 (5)	144
C23—H23B····O5 ⁱ	0.96	2.46	3.242 (5)	139
C41—H41···O8 ⁱⁱ	0.93	2.55	3.435 (5)	159
$(1, \dots, 1, \dots, 1, \dots, (1)) + (1, \dots, 1/2) + (1)$	1 2 1/2			

Symmetry codes: (i) -x+1, y+1/2, -z+2; (ii) -x+2, y-1/2, -z.

Fig. 1

Fig. 2